735 research outputs found

    Network Utility Maximization under Maximum Delay Constraints and Throughput Requirements

    Full text link
    We consider the problem of maximizing aggregate user utilities over a multi-hop network, subject to link capacity constraints, maximum end-to-end delay constraints, and user throughput requirements. A user's utility is a concave function of the achieved throughput or the experienced maximum delay. The problem is important for supporting real-time multimedia traffic, and is uniquely challenging due to the need of simultaneously considering maximum delay constraints and throughput requirements. We first show that it is NP-complete either (i) to construct a feasible solution strictly meeting all constraints, or (ii) to obtain an optimal solution after we relax maximum delay constraints or throughput requirements up to constant ratios. We then develop a polynomial-time approximation algorithm named PASS. The design of PASS leverages a novel understanding between non-convex maximum-delay-aware problems and their convex average-delay-aware counterparts, which can be of independent interest and suggest a new avenue for solving maximum-delay-aware network optimization problems. Under realistic conditions, PASS achieves constant or problem-dependent approximation ratios, at the cost of violating maximum delay constraints or throughput requirements by up to constant or problem-dependent ratios. PASS is practically useful since the conditions for PASS are satisfied in many popular application scenarios. We empirically evaluate PASS using extensive simulations of supporting video-conferencing traffic across Amazon EC2 datacenters. Compared to existing algorithms and a conceivable baseline, PASS obtains up to 100%100\% improvement of utilities, by meeting the throughput requirements but relaxing the maximum delay constraints that are acceptable for practical video conferencing applications

    On the Min-Max-Delay Problem: NP-completeness, Algorithm, and Integrality Gap

    Full text link
    We study a delay-sensitive information flow problem where a source streams information to a sink over a directed graph G(V,E) at a fixed rate R possibly using multiple paths to minimize the maximum end-to-end delay, denoted as the Min-Max-Delay problem. Transmission over an edge incurs a constant delay within the capacity. We prove that Min-Max-Delay is weakly NP-complete, and demonstrate that it becomes strongly NP-complete if we require integer flow solution. We propose an optimal pseudo-polynomial time algorithm for Min-Max-Delay, with time complexity O(\log (Nd_{\max}) (N^5d_{\max}^{2.5})(\log R+N^2d_{\max}\log(N^2d_{\max}))), where N = \max\{|V|,|E|\} and d_{\max} is the maximum edge delay. Besides, we show that the integrality gap, which is defined as the ratio of the maximum delay of an optimal integer flow to the maximum delay of an optimal fractional flow, could be arbitrarily large

    MASK FACE INPAINTING BASED ON IMPROVED GENERATIVE ADVERSARIAL NETWORK

    Get PDF
    Face recognition technology has been widely used in all aspects of people's lives. However, the accuracy of face recognition is greatly reduced due to the obscuring of objects, such as masks and sunglasses. Wearing masks in public has been a crucial approach to preventing illness, especially since the Covid-19 outbreak. This poses challenges to applications such as face recognition. Therefore, the removal of masks via image inpainting has become a hot topic in the field of computer vision. Deep learning-based image inpainting techniques have taken observable results, but the restored images still have problems such as blurring and inconsistency. To address such problems, this paper proposes an improved inpainting model based on generative adversarial network: the model adds attention mechanisms to the sampling module based on pix2pix network; the residual module is improved by adding convolutional branches. The improved inpainting model can not only effectively restore faces obscured by face masks, but also realize the inpainting of randomly obscured images of human faces. To further validate the generality of the inpainting model, tests are conducted on the datasets of CelebA, Paris Street and Place2, and the experimental results show that both SSIM and PSNR have improved significantly

    Minimizing Age-of-Information with Throughput Requirements in Multi-Path Network Communication

    Full text link
    We consider the scenario where a sender periodically sends a batch of data to a receiver over a multi-hop network, possibly using multiple paths. Our objective is to minimize peak/average Age-of-Information (AoI) subject to throughput requirements. The consideration of batch generation and multi-path communication differentiates our AoI study from existing ones. We first show that our AoI minimization problems are NP-hard, but only in the weak sense, as we develop an optimal algorithm with a pseudo-polynomial time complexity. We then prove that minimizing AoI and minimizing maximum delay are "roughly" equivalent, in the sense that any optimal solution of the latter is an approximate solution of the former with bounded optimality loss. We leverage this understanding to design a general approximation framework for our problems. It can build upon any α\alpha-approximation algorithm of the maximum delay minimization problem, to construct an (α+c)(\alpha+c)-approximate solution for minimizing AoI. Here cc is a constant depending on the throughput requirements. Simulations over various network topologies validate the effectiveness of our approach.Comment: Accepted by the ACM Twentieth International Symposium on Mobile Ad Hoc Networking and Computing (ACM MobiHoc 2019

    Planar Metasurfaces Enable High‐Efficiency Colored Perovskite Solar Cells

    Full text link
    The achievement of perfect light absorption in ultrathin semiconductor materials is not only a long‐standing goal, but also a critical challenge for solar energy applications, and thus requires a redesigned strategy. Here, a general strategy is demonstrated both theoretically and experimentally to create a planar metasurface absorber comprising a 1D ultrathin planar semiconductor film (replacing the 2D array of subwavelength elements in classical metasurfaces), a transparent spacer, and a metallic back reflector. Guided by derived formulisms, a new type of macroscopic planar metasurface absorber is experimentally demonstrated with light near‐perfectly and exclusively absorbed by the ultrathin semiconductor film. To demonstrate the power and simplicity of this strategy, a prototype of a planar metasurface solar cell is experimentally demonstrated. Furthermore, the device model predicts that a colored planar metasurface perovskite solar cell can maintain 75% of the efficiency of its black counterpart despite the use of a perovskite film that is one order of magnitude thinner. The displayed cell colors have high purities comparable to those of state‐of‐the‐art color filters, and are insensitive to viewing angles up to 60°. The general theoretical framework in conjunction with experimental demonstrations lays the foundation for designing miniaturized, planar, and multifunctional solar cells and optoelectronic devices.A type of macroscopic planar metasurface absorber with light near‐perfectly and exclusively absorbed by the ultrathin semiconductor film is theoretically and experimentally demonstrated via a general strategy. Guided by this strategy, colored perovskite solar cells are further designed to meet all the desired characteristics including high power conversion efficiency, high‐purity, tunability, and angle‐insensitive colors.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146390/1/advs793.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146390/2/advs793-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146390/3/advs793_am.pd
    corecore